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A subset Y of f3(H) is called a weak Korovkin set if, for every net (~a) of
completely positive linear maps on f3(H) with ~a(I) ~ I, the relation ~a(S) ---+ S
weakly, S E ,'/, implies ~a(T) ---+ T weakly, T E f3(H). Let ,S" be an irreducible
subset of f3(H) which contains the identity operator.

THEOREM. (i) If there are T E span{Y + Y' *} and a compact operator K such
that liT - KII < II Til, then Y is a weak Korovkin set. (ii) If C*(Y) contains a
nonzero compact operator, then g- = {S: S E Y} U {S*S + SS*: S E Y} is a
weak Korovkin set. In particular, if ,rr = {I, S P'''' Sm}' then g-' = {I, S I"'" Sm'
Lj"~l (S/Sj + SjS/)} is a weak Korovkin set. © 1984 Academic Press, Inc.

1. INTRODUCTION

Let X be a compact Hausdorff space, and denote by C(X) the set of all
complex-valued continuous functions on X. A subset Y of C(X) is called a
Korovkin set in C(X) if, for each sequence (~n) of positive linear maps on
C(X), the relation ~n(g) --t g uniformly, g E Y, implies ~n(J) --t funiformly,
f E C(X). A famous result of Korovkin states [7, p. 16] that for X = [a, b],
the set {I, X, x 2

} is a Korovkin set. This result has been extended as follows.
For x E X, consider the evaluation functional ex(J) = f(x), f E C(X). Let
Y c C(X) contain the constant function 1 and separate the points of X.
Then Y is a Korovkin set in C(X) if and only if for every x E X, the
restriction exl y has a unique positive linear extension to C(X) [4,
Corollary 1, p. 167]. In particular, if the functions gp..., gm in C(X) separate
the points of X, then {l, gp'''' gm' LJ= I I g 1

2
} is a Korovkin set in C(X) [4,

Example 2, p. 180; 9, Theorem 2.8].
In [11], the following analogue of Korovkin's result for a C*-algebra A

with identity 1A is proved. Let 1A EYe A. If for every e in the pure state
space of A, the restriction ely has a unique positive linear extension to A,
then Y is a Korovkin set in A. The applicability of this analogue is,
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however, severely restricted by the lack of exact knowledge of the pure state
space of a noncommutative C*-algebra.

The purpose of the present paper is to obtain analogues of Korovkin's
result for the set P(H) of all bounded operators on a complex Hilbert space
H, when approximation in the weak sense by completely positive linear maps
is considered. We introduce the notion of a weak Korovkin set in P(H). For
an irreducible set Y in P(H) to be a weak Korovkin set, it turns out to be
crucial that the identity representation of C*(Y) be a boundary represen­
tation for Y in the sense of Arveson (Theorem 3.2). We give several
sufficient conditions for this to happen (Corollaries 3.4 and 3.7). Particular
cases of these results are cited which involve some well-known bounded
operators on L 2( [0, 1J) and on 12 (Examples 3.5 and 3.8). Here, convergence
on a set of two or three bounded operators implies convergence on all
bounded operators. This work improves upon some results proved by the
authors in Example 5(iii) of [8] as far as the weak convergence is concerned.
In [8] convergence on only the compact operators was obtained, and that
too under more restrictive assumptions.

2. COMPLETELY POSITIVE MAPS ON P(H)

In this section, we recall some notions from the theory of C*-algebras and
prove a unique extension result for certain maps on the C*-algebra P(H) of
all bounded operators on a Hilbert space H.

Let A and B denote C*-algebras with identities IA and IB' respectively. A
linear map ¢: A ---t B is called completely positive if for every natural number
k, a l , ... , ak in A and bl , ... , bk in B, we have

k

L b7¢(aiaj ) bj = b*b
i,j=1

for some bE B. The set of all such maps is denoted by CP(A, B) which is
abbreviated to CP(A) in case B =A. By considering k = 1 and b l = IB' we
see that every completely positive linear map is positive; the converse is true
if either A or B is commutative (3.4, 3.5, and 3.9 of Chap. IV in [12 J). Thus,
completely positive linear maps on P(H) are appropriate analogues of
positive linear maps on C(X).

Stinespring has proved [1, p. 145] that ¢ E CP(A, P(H)) if and only if
there is a complex Hilbert space G, a representation (i.e., a *homo­
morphism) n: A ---t peG) and a bounded linear map V: H --+ G such that

and

¢(a) = V*n(a) V, aEA

[n(A) VCR)] = G,
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where [F] denotes the closed subspace generated by Fe G. Further, the
above G, n, and V are uniquely determined by ~ up to unitary equivalence.

A map ~ E CP(A, B) is said to be pure if the relation ~ = ~I + ~2'

~I' ~2 E CP(A, B) implies that ~I and ~2 are scalar multiples of ~. A subset
Y of fJ(H) is called irreducible if the only closed subspaces of H left
invariant by all Sand S*, S E Y, are {Of and H. A nonzero representation
n: A -t fJ(H) is said to be irreducible if its range n(A) is an irreducible subset
of fJ(H) [3, p.I4]. Arveson has proved [1, p.I6I] that if O"*~E

CP(A, fJ(H» is pure, then n is ireducible and V"* 0, in the Stinespring
representation of~; conversely, if n: A -t fJ(G) is an irreducible representation
and V is a nonzero bounded linear map from H to G, then ~(. ) = V*n(· ) V is
a pure map.

Let K(H) denote the set of all compact operators on H. Since K(H) is
weakly dense in fJ(H), it is clear that if 0 "* ~ E CP(fJ(H» is continuous in
the weak topology on fJ(H), then ~ is not zero on K(H). Although the
converse is false in general, it holds for a pure map.

LEMMA 2.1. Let 0 "* ~o E CP(fJ(H» be pure. If ~o is not zero on K(H),
then ~o is continuous in the weak topology on fJ(H).

Proof Consider the Stinespring representation

~o(T) = V*n(T) V, TE fJ(H),

of ~o. Since ~o is pure, the representation n: fJ(H) -t fJ(G) is irreducible. Now,
n(K(H»"* {Of and K(H) is an ideal in fJ(H). Hence by Theorem 1.3.4 on [3],
the restriction nl"(H) is irreducible and extends uniquely to an irreducible
representation of fJ(H). But every irreducible representation of K(H) is
unitarily equivalent to the identity representation id: K(H) -t fJ(H) [3, p. 20].
Thus, there is a unitary map U: G -t U such that

Hence

n(T) = U*TU,

~o(T) = (UV)*T(UV),

TE fJ(H).

TE fJ(H).

If Ta , TE fJ(H) and (TaX, y) -t (Tx, y) for all x, y E H, then

(~o(T)x, y) = (TaUVx, UVy)

-t (TUVx, UVy)

= (~o(T)x, y).

Thus, ~o is continuous in the weak topology on fJ(H). I
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PROPOSITION 2.2. Let '6' be an irreducible C*-subalgebra of fJ(H)
containing the identity operator 1 and a nonzero compact operator. Consider
the identity map id: fJ(H) -. fJ(H). Then id Ill' has a unique completely positive
linear extension to fJ(H), namely, id itself.

Proof Let, E CP(fJ(H) and ,(T) = id(T) = T for all T E '6'. If , 1= id,
then the set

Q= {'II E CP(fJ(H)): 'II Ill' = idlwl

contains at least two elements. This set is convex and since 11'1111 = 11'11(1)11 = 1
for every'll E Q, it is compact in the weak operator topology [6, p. 974]. By
the Krein-Milman theorem, Q must contain an extreme point '0 1= id.

We prove that,o is, in fact, pure. Let,o =,) +'2 with 01='i E CP(fJ(H)).
Then '0Iw=')lw+~2Iw, where ~ilwE CP('6',fJ(H)), and ~ilw1=O, since '6'
contains 1. Now,

~olw(') = idlw(') = 1*7Co(' )1,

where 7Co: '6' -. fJ(H) is given by 7Co(T) = T. Since '6' is an irreducible C*­
subalgebra of fJ(H), it follows that 7Co is irreducible so that ~o Iw is pure.
Hence

and

for some nonnegative scalars a) and a 2 • Since ~ iIw1= 0, we see that a i > O.
Also, a) + a 2 = 1, since

Now, ~dai belongs to Q and

As ~o is an extreme point of Q, it follows that ~) /a) = ~o = ~da2' i.e., ~o is
pure.

Again, ~o(K) = id(K) = K 1= 0 for some compact K E '6'. By Lemma 2.1,
~o is continuous in the weak topology on fJ(H). Since '6' is an irreducible C*­
algebra and contains a nonzero compact operator, it contains K(H) [3,
p. 18]. Thus, the weakly continuous maps ~o and id agree on K(H), which is
weakly dense in fJ(H). This shows that ~o = id, and the proof is complete. I

The proofs of Lemma 2.1 and Proposition 2.2 should be compared with
the proof of Theorem 2.4.5 of [1, p. 180].
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3. WEAK KOROVKIN SETS IN P(H)
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In this section we consider irreducible subsets of P(H) and find a variety
of conditions under which weak convergence of a net of completely positive
linear maps on such a subset implies its weak convergence on the entire C*­
algebra P(H).

DEFINITION 3.1. A subset Y of P(H) will be called a weak Korovkin set
in P(H) if, for each net (~a) in CP(f3(H)) satisfying ~a(I) ~ I, the relation
~a(S) -+ S weakly, S E Y, implies ~a(T) -+ T weakly, T E P(H).

We remark that if Y is a weak Korovkin set in P(H), then in fact
~a(T) -+ T strongly for every T E P(H). This follows by noting that for
~ E CP(f3(H)) with ~(I) ~ I, we have

~(T)*~(1) ~ II ~ II ~(T* 1)

= II~(I)II ~(T*1)

~ ~(T*T), T E P(H),

by Corollary 3.8, p. 199 of [12]. Hence for x E H,

II ~a(1)x - Txl1 2 = (~a(T*) ~a(T)x, x) + (T*Tx, x)

- 2 Re(~a(1)x, Tx)

~ (~a(T*1)x,x) + (T*Tx, x)

- 2 Re(~a(T)x, Tx)

-+ (T*Tx, x) + (T*Tx, x) - 2 Re(Tx, Tx)

=0.

For Y cP(H), we denote the C*-subalgebra generated by I and Y in
P(H) by C*(Y).

THEOREM 3.2. Let Y be an irreducible set in P(H) such that Y
contains the identity operator I and C*(Y) contains a nonzero compact
operator. Then Y is a weak Korovkin set in P(H) if and only ifidl y has a
unique completely positive linear extension to C*(Y), namely, id Ic*(,Y')'

Proof Let Y be a weak Korovkin set in P(H). Let
~ECP(C*(Y),P(H)) and ~Iy=idly. Then ~ can be extended to
f E CP(f3(H)) [1, Theorem 1.2.3]. By considering the constant net ~a = f in
CP(f3(H)) with ~a(I) = f(I) = id(I) = I, we see that ~(1) = f(T) = ~a(T) -+ T
for every TE C*(Y). Thus, ~ = idlc*(.Y)' This proves the necessity half.
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To improve the sufficiency half, assume that id Iy has a unique completely
positive linear extension to C*(Y). But by Proposition 2.2, id Ie'!'/) has a
unique completely positive linear extension to fJ(H). Thus, id Iy has a unique
completely positive linear extension to fJ(H), namely, id itself. Now let (~a)

be a net in CP(fJ(H)) satisfying ¢a(I)::;;; I, and let ¢a(S) -+ S weakly for every
S E Y. On the set {If! E CP(fJ(H)): If!(I) ::;;; J}, consider the weak operator
topology, in which the set is compact. If ¢ is any cluster point of the net
(¢a)' let (¢Il) be a subnet of (¢a) converging to ¢. Then for every S E Y,

¢(S) = lim ¢1l(S) = lim ¢a(S) = S,

i.e., ¢ Iy = id Iy. Hence ¢ = id on fJ(H). Thus, every cluster point of the net
(¢a) coincides with id, i.e., ¢a -+ id in the weak operator topology, or
¢a(T)-+ Tweakly for every TEfJ(H). I

Remark 3.3. The condition "id Iy has a unique completely positive
linear extension to C*(Y)" is sometimes expressed by saying that the
identity representation of C*(Y) is a boundary representation for Y. The
famous boundary theorem of Arveson (Theorem 2.1.1 of [2]) states as
follows: Let Y be an irreducible set in fJ(H) such that Y contains the
identity operator and C*(Y) contains a nonzero compact operator. Then the
identity representation of C*(Y) is a boundary representation for .Y if and
only if the quotient map q: fJ(H) -+ fJ(H)/k(H) is not completely isometric on
span {Y +Y*}, i.e., for some natural number k, if M k denotes the set of all
k X k complex matrices, then the map q @ idk : C*(Y) ® M k -+
((C*(Y)/k(H)) ® M k is not isometric. This result (especially, the case
k = 1) provides a useful method by which a set Y in fJ(H) can be shown to
be a weak Korovkin set.

COROLLARY 3.4. Let Y be an irreducible set in fJ(H) which contains the
identity operator I. Suppose that there are T E span{Y +Y *} and a
compact operator K in fJ(H) such that liT - KII < II Til. Then Y is a weak
Korovkin set in fJ(H).

Proof As noted in the proof of the Corollary on p.289 of [2], the
irreducible C*-algebra C*(Y) must contain a nonzero compact operator,
for otherwise the quotient map q: fJ(H) -+ fJ(H)/k(H) would be injective. But
a * isomorphism between two C*-algebras is an isometry (Propositions 5.2
and 5.3, pp. 21-22 of [12]). Hence q is isometric on span{Y +Y*}. This
would contradict II T - K II < II Til. By the boundary theorem of Arveson
quoted in Remark 3.3, we see that idly has a unique completely positive
linear extension to C*(Y). Hence Theorem 3.2 shows that Y is a weak
Korovkin set in fJ(H). I
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EXAMPLES 3.5. If Y is an irreducible set of operators in P(R)
containing I, and if span{Y +Y*} (or, Y itself) contains a compact
operator, then the requirement of Corollary 3.4 is trivially satisfied, and we
see that Y is a weak Korovkin set.

For example, let S be a compact irreducible operator on P(R). Then
//' = {I, S} is a weak Korovkin set in P(R). The Volterra integration
operator V(f)(u)=f~f(t)dt, fEL 2 ([0, 1]), uE [0, 1] is a compact
irreducible operator on R = L 2([0, 1]). Thus, weak convergence of a net in
CP(f3(R)) on only two operators I and V implies its weak convergence on
every bounded operator on L 2([0, 1]).

For fin L 2 ([0, 1]), and u E [0, 1], let

M(f)(u) = uf(u),

T(f)(u) = (( f(t) dt) u.

Then Y = {I, M, T} is an irreducible set (p. 245 of [8]) and T is compact.
Hence convergence on I, M, and T implies convergence on P(L 2([0, 1]).

These results improve upon the results given in Example 5(iii) of [8],
where by assuming convergence on {I, V, V* V + VV*} or
{I, M, T, 2M2 + T*T + TT*}, convergence only on compact operators on
L 2([0, 1]) was obtained.

Before we derive another interesting corollary from Theorem 3.2, we prove
another unique extension result which may be of independent interest. Let A
and B be C*-algebras. A * linear map ~: A --+ B is called a Schwarz map if

~(a)*~(a)~ ~(a*a), aEA.

PROPOSITION 3.6. Let E be a subset ofa C*-algebra A, and let C denote
the C*-subalgebra generated by E in A. Let F = {a: a E E} U
{a*a + aa*: a E E}. Consider a *homomorphism ~ from C to a C*-algebra
B. Then ~ IF has a unique Schwarz extension to C, namely, ~ itself.

Proof Let l/I:C-+B be a Schwarz map such that l/IIF=~IF. Let

C", = {a E A: l/I(a) = ~(a), l/I(a*a +aa*) = ~(a*a + aa*)}.

ForaEC""

~(a*a)= ~(a)*~(a) = l/I(a)*l/I(a) ~ l/I(a*a),

and similarly, ~(aa*) ~ l/I(aa*). But

[l/I(a *a) - ~(a*a)] + [l/I(aa*) - ~(aa*)] = l/I(a*a + aa *) - ~(a*a + aa*)

=0.



208 LIMAYE AND NAMBOODIRI

Hence 'I!(a*a) = ~(a*a) and 'I!(aa*) = ~(aa*). Thus, we have

C", = {a E A: 'I!(a) = ~(a), 'I!(a*a) = ~(a*a), 'I!(aa*) = ~(aa*)}.

Next, we show that C", is a C*-subalgebra of A. Clearly C", is closed under *
and scalar multiplication. We prove that if a E C", and bE A with
'I!(b) = ~(b), then 'I!(ab) = ~(ab) and 'I!(ba) = ~(ba). Now, for every positive
number t,

t[ 'I!(b) 'I!(a) + 'I!(a)*'I!(b)*] = 'I!((tb* +a» 'I!(tb* +a)

- t 2'1!(b) 'I!(b*) - 'I!(a*) 'I!(a)

~ 'I!((tb* +a)*(tb* +a»

- t2 '1!(b) 'I!(b*) - 'I!(a*) 'I!(a)

= t'l!(ba +a*b*)

+ t 2 ['I!(bb*) - 'I!(b) 'I!(b*)],

since a E C",. Hence

'I!(b) 'I!(a) + 'I!(a)*'I!(b)* - 'I!(ba + a*b*) ~ t['I!(bb*) - 'I!(b) 'I!(b*)].

Since this is true for every t >0, we have

'I!(b) 'I!(a) + 'I!(a)*'I!(b)* - 'I!(ba +a*b*) ~ O.

Changing a to -a, we have

-'I!(b) 'I!(a) - 'I!(a)*'I!(b)* + 'I!(ba +a*b*) ~ O.

Hence

'I!(b) 'I!(a) + 'I!(a)*'I!(b)* = 'I!(ba +a*b*).

Changing a to ia, we have

'I!(b) 'I!(a) - 'I!(a )*'I!(b)* = 'I!(ba - a*b*).

Thus, by adding we obtain

'I!(ba) = 'I!(b) 'I!(a) = ~(b) ~(a) = ~(ba).

Changing a to a* and b to b*, we have

'I!(b*a*) = ~(b*a*),

and taking adjoints, we obtain

'I!(ab) = ~(ab).
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By repeated application of this result, it is easy to see that for a, b E C til' we
have a + b, ab E Ctil' Also, Ctil is closed in A since l/I and ~ are continuous.
Thus, C til is a C*-subalgebra of A. But E C C til by the definition of F and the
assumption that l/IIF = ~ IF' Hence the C*-algebra C generated by E in A is
contained in Ctil so that l/I(a) = ~(a) for every a E C. I

The proof of the above proposition closely follows the one given in [lO].
We have written it out in detail because it is much simpler in the present
case. If B = P(H), the above result can also be stated as follows: ~ is a
boundary representation for F.

COROLLARY 3.7. Let Y be an irreducible set in P(H) such that Y
contains the identity operator I and C*(Y) contains a nonzero compact
operator. Then

15 = IS: S E Y} U {S*S + SS*: S E Y}

is a weak Korovkin set in P(H).
If Y is finite and Y = {I, SI ,... , Sm}, then

15'= ~I,S"... ,Sm, j~1 (S/Sj+Sj Sn1
is a weak Korovkin set in P(H).

Proof By Proposition 3.6 with A = B = P(H), E = Y, and ~ = id Ic'(y),

we see that idlg- has a unique Schwarz extension to C*(Y) = C*(g-). Let
l/I E CP(C*(Y), P(H)), and l/Ilg- = idlg-. Then l/I is a Schwarz map by
Corollary 3.8 on p. 199 of [12]. Thus, id Ig- has a unique completely positive
linear extension to C*(i5). The desired result now follows by Theorem 3.2.

If Y = {I, S 1 , ... , Sm}, and l/I is a Schwarz map on C* (Y) with
l/Ilg-,=idlg-" then it can be easily seen that l/Ilg-=idlg-, where
15 = {I, S"..., Sm' StSI + SISt,..., S~Sm + SmS~}, This implies that 15' is
a weak Korovkin set in P(H). I

EXAMPLES 3.8. Let S be an irreducible operator which is almost normal
(i.e., S*S - SS* is a compact operator), but not normal (i.e.,
S*S - SS* =1= 0). Then the set Y = {I, S} satisfies the requirement of
Corollary 3.7 and we see that the set

15 = {I, S, S*S + SS*}

of three operators is a weak Korovkin set.
We illustrate this result by describing a class of irreducible almost normal

but nonnormal operators. Let H be a separable Hilbert space and let
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{eo, ep ... } be an orthonormal basis for H. A unilateral weighted shift
operator S on H is defined by Sen = anen+l' n = 0,1,... , where °< lanl ~
a < 00. Each such operator is irreducible. Also, (S*S - SS*) en =
(IanI2-lan_112)en for n=O, 1,2,..., with a1=0. Thus, S is almost normal
iff lanl-lan_11---+0 as n---+oo, and S is always nonnormal since
(S*S-SS*)eo=laoI

2eoi'0. If an---+O, then S is itself compact (and
irreducible).

For a unilateral weighted shift S with weights an' it can be easily seen that
II S II = sUPn Ian I· If S is almost normal and q: fJ(H) ---+ fJ(H)jK(H) is the
quotient map, then it can be proved (Lemma 2, p. 292 of [2]) that the
spectral radius of q(S) is limn sup Ian I. Using these calculations, Arveson has
proved (Corollary, p. 292 of [2]) that if

lim sup lanl < sup lanl,
n

n

(i)

and Y = {I, S}, then id leY' has a unique completely positive linear extension
to C*(Y), while if

n
lim sup lanl = sup lanl,

n
(ii)

and Y = {I, S, S2,... }, then id leY' does not have a unique completely positive
linear extension to C*(Y). Hence our Theorem 3.2 shows that in case (i),
{I, S} is a weak Korovkin set in fJ(H), while in case (ii), even the larger set
{I, S, S2, ... } is not a weak Korovkin set in fJ(H). However, by Corollary 3.7,
we see that {I, S, S*S +SS*} is a weak Korovkin set in fJ(H). To cite
concrete cases, let H = P and

and

Then {I, S l' S tS I} is a weak Korovkin set in fJ(H), but {I, S 1} is not. On the
other hand, {I, S2} is a weak Korovkin set in fJ(H). These results give exact
noncommutative analogues of the classical theorem of Korovkin regarding
approximation of positive linear operators on 1, x, and x 2

•
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